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We introduce a novel framework for estimating visual
sensitivity using a continuous target-tracking task in
concert with a dynamic internal model of human visual
performance. Observers used a mouse cursor to track
the center of a two-dimensional Gaussian luminance
blob as it moved in a random walk in a field of dynamic
additive Gaussian luminance noise. To estimate visual
sensitivity, we fit a Kalman filter model to the human
tracking data under the assumption that humans behave
as Bayesian ideal observers. Such observers optimally
combine prior information with noisy observations to
produce an estimate of target position at each time step.
We found that estimates of human sensory noise
obtained from the Kalman filter fit were highly
correlated with traditional psychophysical measures of
human sensitivity (R> > 97%). Because each frame of the
tracking task is effectively a “minitrial,” this technique
reduces the amount of time required to assess sensitivity
compared with traditional psychophysics. Furthermore,
because the task is fast, easy, and fun, it could be used to
assess children, certain clinical patients, and other
populations that may get impatient with traditional
psychophysics. Importantly, the modeling framework
provides estimates of decision variable variance that are
directly comparable with those obtained from traditional
psychophysics. Further, we show that easily computed
summary statistics of the tracking data can also
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accurately predict relative sensitivity (i.e., traditional
sensitivity to within a scale factor).

If a stimulus is visible, observers can answer
questions such as “Can you see it?” or “Is it to the right
or left of center?” This fact is the basis of psycho-
physics. Since Elemente der Psychophysik was pub-
lished in 1860 (Fechner, 1860), an enormous amount
has been learned about perceptual systems using
psychophysics. Much of this knowledge relies on the
rich mathematical framework developed to connect
stimuli with the type of simple decisions just described
(e.g., Green & Swets, 1966). Unfortunately, data
collection in psychophysics can be tedious. Forced-
choice paradigms are aggravating for novices, and few
but authors and paid volunteers are willing to spend
hours in the dark answering a single, basic question
over and over again. Also, the roughly one bit per
second rate of data collection is rather slow compared
with other techniques used by those interested in
perception and decision making (e.g., EEG).
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The research described here is based on a simple
intuition: if a subject can accurately answer psycho-
physical questions about the position of a stimulus, he
or she should also be able to accurately point to its
position. Pointing at a moving target—manual track-
ing—should be more accurate for clearly visible targets
than for targets that are difficult to see. We show that
this intuition holds, and that sensitivity measures
obtained from a tracking task are directly relatable to
those obtained from traditional psychophysics. More-
over, tracking a moving target is easy and fun,
requiring only very simple instructions to the subject.
Tracking produces a large amount of data in a short
amount of time, because each video frame during the
experiment is effectively a “minitrial.”

In principle, data from tracking experiments could
stand on their own merit. For example, if a subject is
able to track a 3 ¢/° Gabor patch with a lower latency
and less positional error than a 20 ¢/° Gabor patch of
the same contrast, then functionally, the former is seen
more clearly than the latter. It would be nice, however,
to take things a step further. It would be useful to
establish a relationship between changes in tracking
performance and changes in psychophysical perfor-
mance. That is, it would be useful to directly relate the
tracking task to traditional psychophysics. The primary
goal of this paper is to begin to establish this
relationship.

We designed complimentary tracking and forced-
choice experiments such that both experiments (a) used
the same targets, and (b) contained external noise that
served as the performance-limiting noise. We used
stimuli that were Gaussian luminance blobs targets
corrupted with external pixel noise (Figure 1; see
Methods for details).

The main challenge was to extract a parameter
estimate from the tracking task that was analogous to a
parameter traditionally used to quantify performance
in a psychophysical task. In a traditional 2AFC (two-
alternative forced choice) psychophysical experiment
for assessing position discrimination, the tools of signal
detection theory are used to obtain an estimate of the
signal-to-noise ratio along a hypothetical decision axis.
With reasonable assumptions, the observation noise
associated with position estimates can be determined.

For a tracking experiment, recovering observation
noise requires a model of tracking performance that
incorporates an estimate of the precision with which a
target can be localized. General tracking problems are
ubiquitous in engineering and the optimal control
theory of simple tracking tasks is well established. For
cases like our tracking task, the Bayesian optimal
tracker is the Kalman filter (Kalman, 1960). The
Kalman filter explicitly incorporates an estimate of the
performance-limiting observation noise as a key
component. The next few paragraphs provide a brief
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Figure 1. Examples of the stimuli are shown in the left column,
and cross-sections (normalized intensity vs. horizontal position)
are shown on the right.

discussion of the logic behind a Kalman filter. The
purpose of the discussion is to make clear how
observation noise affects a Kalman filter’s tracking
performance.

In order to track a target, the Kalman filter uses the
current observation of a target’s position, information
about target dynamics, and the previous estimate of
target position to obtain an optimal (i.e., minimum
mean square error) estimate of true target position on
each time step. Importantly, the previous estimate has a
(weighted) history across previous time steps built-in.
How these values (the noisy observation, target
dynamics, and the previous estimate) are combined is
dependent on the relative size of the two sources of
variance present in the Kalman filter: (a) the observa-
tion noise variance (i.e., the variance associated with
the current sensory observation), and (b) the target
displacement variance (i.e., the variance driving the
target position from time step to time step).

When the observation noise variance is low relative
to the target displacement variance (i.e., target visibility
is high), the difference between the previous position
estimate and the current noisy observation is likely to
be due to changes in the position of the target. That is,
the observation is likely to provide reliable information
about the target position. As a result, the previous
estimate will be given little weight compared to the
current observation. Tracking performance will be fast
and have a short lag.

On the other hand, if observation noise variance is
high relative to target displacement variance (i.e., target
visibility is low), then the difference between the
previous position estimate and the current noisy
observation is likely driven by observation noise. In this
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scenario, little weight will be given to the current
observation while greater weight will be placed on the
previous estimate. Tracking performance will be slow
and have a long lag. As we will see, the Kalman filter
qualitatively predicts the data patterns observed in this
set of experiments, under the assumption that increas-
ing blob width reduces target visibility, thereby
increasing observation noise.

In our analysis, we fit human tracking data with a
Kalman filter. We allowed the model’s observation
noise parameter, R, to vary as a free parameter. The
parameter value (observation noise variance) that
maximizes the likelihood of the fit under the model is
our estimate of the target position uncertainty that
limits the tracking performance of the observer.

In the results that follow, we show that using a
Kalman filter to model the human tracking data yields
essentially the same estimates of position uncertainty as
do standard methods in traditional psychophysics. The
correlations between the results of the two paradigms
are extremely high, with over 97% of the variance
accounted for. We also show that more easily
computed statistical summaries of tracking data (e.g.,
the width of the peak of the cross-correlation between
stimulus and response) correlate almost as highly with
traditional psychophysical results. To summarize, an
appropriately constructed tracking task is a fun,
natural way to collect large, rich datasets, and yield
essentially the same results as traditional psychophysics
in a fraction of the time.

Observers

Three of the authors served as observers (LKC, JDB,
and KLB). All had normal or corrected-to-normal
vision. Two of the three had extensive prior experience
in psychophysical experiments. All the observers
participated with informed consent and were treated
according the principles set forth in the Declaration of
Helsinki of the World Medical Association.

Stimuli

The target was a luminance increment (or “blob”)
defined by a two-dimensional Gaussian function
embedded in dynamic Gaussian pixel noise. We
manipulated the spatial uncertainty of the target by
varying the space constant (standard deviation, here-
after referred to as “blob width”) of the Gaussian,
keeping the luminous flux (volume under the Gaussian)
constant. Examples of these are shown in Figure 1. The
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space constants were 11, 13, 17, 21, 25, and 29 arcmin;
the intensity of the pixel noise was clipped at three
standard deviations, and set such that the maximum
value of the 11 arcmin Gaussian plus three noise
standard deviations corresponded to the maximum
output of the monitor. We used this blob target (e.g., as
opposed to a Gabor patch) because, for the tracking
experiment, we wanted a target with an unambiguous
bright center at which to point.

In the tracking experiment, the target moved
according to a random (Brownian) walk for 20 s
(positions updated at 60 Hz) around a square field of
noise about 6.5° (300 pixels) on a side. To specify the
walk, we generated two sequences of Gaussian white
noise velocities (v, v,) with a one pixel per frame
standard deviation. These were summed cumulatively
to yield a sequence of x,y pixel positions. Also visible
was a 2 x 2 pixel (2.6 arcmin) square red cursor that the
observer controlled with the mouse.

Apparatus

The stimuli were displayed on a Sony OLED flat
monitor running at 60 Hz. The monitor was gamma-
corrected to yield a linear relationship between
luminance and pixel value. The maximum, minimum,
and mean luminances were 134.1, 1.7, and 67.4 cd/mz,
respectively.

All experiments were run using custom code written
in MATLAB and used the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997; Kleiner, Brainard, Pelli, &
Ingling, 2007). A standard USB mouse was used to
record the tracking data, and a standard USB keyboard
was used to collect the psychophysical response data.

Experiments 1 and 2 (the tracking and main
psychophysics experiments) were run using a viewing
distance of 50 cm giving 45.5 pixels/° of visual angle.
Experiment 3, a supplementary psychophysical exper-
iment on the effect of viewing duration, was run using a
viewing distance of 65.3 cm giving 60 pixels/°. In both
cases, the observer viewed the stimuli binocularly using
a chin cup and forehead rest to maintain head position.

In the tracking experiment, observers tracked a
randomly moving Gaussian blob with a small red
cursor using a computer mouse. The data were fit with
a Kalman filter model of tracking performance. The
fitted values of the model parameters provide estimates
of the human uncertainty about target position (i.e.,
observation noise).
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Movie 1. A 5 s example of an experimental trial (actual trials were 20 s long). The luminance blob performed a two-dimensional
random walk. Each position was the former position plus normally distributed random offsets (SD = 1 pixel) in each dimension (x,y).
The subject was attempting to keep the red cursor centered on the blob.

Methods

Each tracking trial was initiated by a mouse click.
Subjects tried to keep the cursor centered on the target
for 20 s while the target moved according to the
random walk. The first five seconds of one such trial are
shown in Movie 1.

A block consisted of 10 such trials at a fixed blob
width. Subjects ran one such block at each of the six
blob widths in a single session. Each subject ran two
sessions and within a session, block order (i.e., blob
width) was randomized. Thus, each subject completed
20 tracking trials at each blob width, for a total of
24,000 samples (400 s at 60 Hz) of tracking data per
blob width. As we later show, this is more data than
required to produce reliable results (see Appendix A for
an analysis of the precision of tracking estimates vs.
sample size). However, we wanted large sample sizes so
that we could compare the data with traditional
psychophysics with high confidence.

Results

The tracking task yields time series data: the two-
dimensional spatial position of a target (left panel of

Figure 2; black curve) and the position of the tracking
cursor (red curve). The remaining panels in Figure 2
show the horizontal and vertical components of the
time series data in the left panel as a function of time.
Subjects were able to track the target. The differences
between the two time series (true and tracked target
position), and how these differences changed with
target visibility (blob width), constitute the dependent
variable in the tracking experiment.

A common tool for quantifying the relationship
between target and response time series is the cross-
correlogram (CCG; see e.g., Mulligan, Stevenson, &
Cormack, 2013). A CCG is a plot of the correlation
between two vectors of time series data as a function of
the lag between them. Figure 3 shows the cross-
correlation as a function of lag for each individual
tracking trial sorted by blob width (i.e., target
visibility). Each panel shows CCGs per trial in the form
of a heat map (low to high correlation mapped from
red to yellow) sorted on the y axis by blob width during
the trial. Each row of panels is an individual subject.
Because our tracking task has two spatial dimensions,
each trial yields a time series for both the horizontal
and vertical directions. The first and second columns in
the figure show the horizontal and vertical CCGs,
respectively, and the black line traces the maximum
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Figure 2. Target position and subject response for a single tracking trial (left plot). The middle and right plots show the corresponding

time series or the horizontal and vertical positions, respectively.

value of the CCGs across trials. As blob width
increases (i.e., lower peak signal-to-noise), the response
lag increases, the peak correlation decreases, and the
location of the peak correlation becomes more variable.
As there were no significant differences between
horizontal and vertical tracking in this experiment, the
rightmost column of Figure 3 shows the average of the
horizontal and vertical responses. Clearly, the tracking
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Time Lag (s)
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gets slower and less precise as the blob width increases
(i.e., target visibility decreases).

Figure 4 shows a plot of the average CCG across
trials for each blob width for each of the three subjects
(a replot of the data from Figure 3, collapsing across
trial within each blob width). The CCGs sort by blob
width: as blob width increases, the height of the CCG
peak decreases, the lag of the CCG peak increases, and

Combined Response

0 05 1 05 0 05 1
Time Lag (s)

Figure 3. Heatmaps of the cross-correlations between the stimulus and response velocities. Left and Middle columns show horizontal
and vertical response components, respectively. Each row of a subpanel represents an individual tracking trial, and the trials have
been sorted by target blob width (measured in arcmin and labeled by color blocks that correspond with the curve colors in Figure 4);
beginning with the most visible stimuli at the tops of each subpanel. The black lines trace the peaks of the CCGs. The right column
shows the average of horizontal and vertical response correlations within a trial (i.e., average of left and middle columns).
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Figure 4. Average CCGs for blob width (curve color, identified in the legend by their ¢ in arcmin) for each of the three observers
(panel). The peak height, location of peak, and width of curve (however measured) all sort neatly by blob width, with the more visible
targets yielding higher, prompter, and sharper curves. This shows that there is at least a qualitative agreement between measures of

tracking performance and what would be expected from a traditional psychophysical experiment.

the width of the CCG increases. These results show that
tracking performance decreases monotonically with the
signal-to-noise ratio. This result is consistent with the
expected result in a traditional psychophysical exper-
iment. That is, as target visibility decreases, the
observer’s ability to localize a target should also
decrease.

In order to quantify tracking performance in a way
that can be directly related to traditional psychophys-
ics, we fit a Kalman filter model to the data and
extracted the observation noise variance (filter param-
eter R) as a measure of performance. Figure 5
illustrates the details of the Kalman filter in the context
of the tracking task. Our experiment generated two
position values at each time step in a trial: (a) the true
target position (x,) on the screen, and (b) the position
of the observer’s cursor (X,), which was his or her
estimate of the target position (plus dynamics due to

Noisy Sensory
Observations

&

True Target Position

Tgy Lg41: L42

Ty Tpg1sLyt2

Position Estimates

T

arm kinematics, motor noise, and noise introduced by
spatiotemporal response properties of the input device).
The remaining unknowns in the model are the noisy
sensory observations, which are internal to the observer
and cannot be measured directly. These noisy sensory
observations are modulated by a single parameter; the
observation noise variance (R). We fit the observation
noise variance (R) of a Kalman filter model (per
subject) by maximizing the likelihood of the human
data under the model given the true target positions
(see Appendix B for details). Note that we have
assumed for the purpose of this analysis that the
aforementioned contributions of arm kinematics, mo-
tor noise, and input device can be described by a
temporal filter with fixed properties.

For a given observer, this maximum-likelihood
fitting procedure was done simultaneously across all the
runs for a given blob width throwing out the first

Target Displacement
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Figure 5. lllustration of the Kalman filter and our experiment. The true target positions and the estimates (cursor positions) are
known, while the sensory observations, internal to the observer, are unknown. We estimated the variance associated with the latter,
denoted by R, by maximizing the likelihood of the position estimates given the true target positions by adjusting R as a free

parameter.
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Figure 6. The left column shows the positional errors (response position—target position) over time of a subject’s response (top) and
three model responses (bottom, offset vertically for clarity); the black position error trace results from a roughly correct estimate of
R. The right column shows the histograms of the positions from the first column. The distribution from the model output with the
correct noise estimate (black), has roughly the same width as that from the human response (blue, top).

second of each run. This yielded one estimate of R for
each combination of observer and blob width. Error
distributions on R were computed via bootstrapping
(i.e., resampling was performed on observers’ data by
resampling whole trials).

This approach is different from traditional Kalman
filter applications. Typically, the Kalman filter is used in
situations when the noisy observations are known. The
filter parameters (Q and R) are estimated and then the
filter can be used to generate estimates (X,) of the true
target positions (x,). In our case, the noisy observations
cannot be observed and we estimate the observation
noise variance (filter parameter R) given the true target
positions (x,), the target position estimates (X,), and the
target displacement variance (filter parameter Q). Thus,
we essentially use the Kalman filter model in reverse,
treating x; and X; as known instead of y,, in order to
accomplish the goal of estimating R.

We attempt to convey an intuition about what the
fitting accomplishes in Figure 6. The top-left panel
shows an example trace of subject position error (i.e.,
subject response minus target location). This position
error reflects observation noise (and presumably some
motor noise and apparatus noise). The bottom-left
panel shows three possible traces of position error
generated by simulating from the model—the black
trace using an approximately correct value of R (such
as that on which our analysis converges), and two
others (offset vertically for clarity) using incorrect

values. Note that, visually, the standard deviations of
the red and green traces are too large and too small,
respectively. However, the standard deviation of the
black curve is approximately equal to the standard
deviation of the blue curve (the human error trace).
This point is made clearer by examining the distribu-
tions of these residual position values collapsed across
time (right column). Note that the black distribution
has roughly the same width as the blue distribution,
while the others are too big or too small. This is
essentially what our fitting accomplishes: finding the
Kalman filter parameter, R, that results in a distribu-
tion of errors with a standard deviation that is “just
right.” (Brett, 1987).

The results of this analysis are shown in Figure 7,
which plots the square root of the estimated observa-
tion noise variance, v/R, as a function of blob width for
each of the three observers. The estimate of v/R
represents an observer’s uncertainty about the target
location. For the remainder of the paper we refer to v/R
as the positional uncertainty estimate. The results are
systematic, with the tracking noise estimate increasing
as a function of blob width in the same way for all three
observers. The results are intuitive, in that, as the width
of the Gaussian blob increases, the precision with
which an observer can estimate the target position
decreases, yielding greater error in pointing to the
target with a mouse. Qualitatively, they are similar to
what we would expect to see in a plot of threshold
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Figure 7. Positional uncertainty estimate from the Kalman filter
analysis plotted as a function of the Gaussian blob width for
three observers. Both axes are logarithmic. The pale colored
regions indicate = SEM computed by bootstrapping. The black
line is the mean across the observers.

versus signal-to-noise ratio derived from traditional
psychophysical methods.

Discussion

We used a Kalman filter to model performance in a
continuous tracking task. The values of the best fitting
model parameters provide estimates of the uncertainty
with which observers localize the target. The results
were systematic and agree qualitatively with the cross-
correlation analysis, which is a more conventional way
to analyze time-series data. Next, we determine the
quantitative relationship between estimates of posi-
tional uncertainty obtained from tracking and from a
traditional psychophysical experiment.

Experiment 2. Forced-choice

position discrimination

In this experiment, observers attempted to judge the
direction of offset of the same luminance targets used in
the previous experiment. The results were analyzed
using standard methods to estimate the (horizontal)
positional uncertainty that observers had about target
position.

Forced-choice methods

The apparatus was as described in General methods.
An individual trial is depicted in Figure 8. On each
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Is 2nd blob
left/right of 1st blob?

Figure 8. Timeline of a single trial. The task is a two interval
forced-choice task. The stimuli were Gaussian blobs in a field of
white Gaussian noise. Subjects were asked to indicate whether
the second blob was presented to the left or right of the first
blob.

video frame throughout a trial, a new sample of
Gaussian distributed noise, independent in space and
time (e.g., white), was added to the target. The noise
parameters were identical to those used in the tracking
experiment. On each trial, the observer saw two 250 ms
target presentations, separated by a 100 ms interstim-
ulus interval. In one interval, the target always
appeared in the center of the viewing area. In the other
interval, the target appeared at one of nine possible
stimulus locations (four to the left, four to the right,
and zero offset). The observer’s task was to indicate
whether the second interval target was presented to the
left or right of the first interval target. Data were
collected in blocks of 270 trials. Blob width was fixed
within a block. Targets were presented 30 times at each
of the nine comparison locations in a pseudorandom
order. Each observer completed three blocks for each
of the six target blobs, for a total of 4,860 trials per
observer (270 trials/block x 3 blocks/target x 6 targets/
observer).

The data for each run were fit with a cumulative
normal psychometric function (¢), and the spatial
offset of the blob corresponding to d’ = 1.0 point (single
interval) was interpolated from the fit. The ¢ for single
interval was used because it corresponds directly to the
width of the signal + noise (or noise alone) distribution.
Because Pr = ¢ (dél/2) = ¢ (d'/v/2) where Py is the
percent rightward choices and d',; is the 2-interval ',
threshold was defined as the change in position
necessary to travel from the 50% to the 76% rightward
point on the psychometric function.

Results
Thresholds as a function of blob width are shown in

Figure 9. The solid data points are the threshold estimates
from fitting all of an observer’s data at a given blob width,
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Figure 9. Forced-choice threshold as a function of blob width.
Each subject’s average data are shown by the solid points, and
the bands indicate bootstrapped SEM. Both axes are logarith-
mic. The solid black line shows the average across subjects.

and the error bands are = one standard error obtained by
bootstrapping from the raw response data. The heavy
black line shows the (arithmetic) mean for the three
observers. The thresholds for all observers increase with
increasing blob width, with a hint of a lower asymptote
for the smallest targets. This is the same basic pattern of
data we would expect using an equivalent noise paradigm
in a detection (e.g., Pelli, 1990) or localization task, as the
amount of effective external noise increases with
increasing blob width.

Discussion

The thresholds presented in Figure 9 correspond to a
d of 1.0, thus representing the situation in which the
relevant distributions along some decision axis were
separated by their common standard deviation. As-
suming that the position of the target distribution on the
decision axis is roughly a linear transformation of the
target’s position in space, then this also corresponds to
the point at which the targets were separated by roughly
one standard deviation of the observer’s uncertainty
about their position. Thus, the offset thresholds serve as
an estimate of the width of the distribution that
describes the observer’s uncertainty about the target’s
position. This is exactly what the positional uncertainty
estimates represented in the tracking experiment. In fact,
it would be reasonable to call the forced-choice
thresholds “positional uncertainty estimates” instead.
The use of the word threshold is simply a matter of
convention in traditional psychophysics.

Figure 10 shows a scatterplot of the results from the
tracking experiment (y coordinates) versus those from
the traditional psychophysics (x coordinates). The log-

Forced Choice Thresholds (arcmin)

Figure 10. Scatter plot of the position uncertainty estimated
from the tracking experiment (y axis) as a function of the
thresholds from traditional psychophysics (x axis) for our three
observers. The log-log slope is very close to 1 and the
percentage of variance accounted for is over 96% for each
observer.

log slopes are 0.98 (LKC), 1.12 (JDB), and 1.02
(KLB). The corresponding correlations are 0.985,
0.996, and 0.980, respectively. Obviously, the results
are in good agreement; the change in psychophysical
thresholds with blob width is accounting for over 96%
of the variance in the estimates obtained from the
tracking paradigm, the high correlation indicates that
the two variables are related by an affine transfor-
mation. In our case (see Figure 10), the variables are
related by a single scalar multiplier. This suggests to us
that the same basic quantity is being measured in both
experiments.

There is, however, an offset of about one log unit
between the estimates generated by the two experi-
ments. For example if, for a given blob width, the
2AFC task yields an estimate of 1 arcmin of positional
uncertainty, the tracking task would yield a corre-
sponding estimate of 10 arcmin. The relative estimates
are tightly coupled, but we would like to understand
the reasons for the discrepancy in the absolute values.
One obvious candidate is temporal integration, which
would almost certainly improve performance in the
psychophysical task relative to the tracking task.

Experiment 3. Temporal integration

One possible reason for the fixed discrepancy
between the positional uncertainty estimates in the
tracking task and the thresholds in the traditional
psychophysical task is temporal integration. In the
traditional task, the observers could benefit by inte-
grating information across multiple stimulus frames
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(up to 15 per interval) in order to do the task. If
subjects integrated perfectly over all 15 frames,
threshold would be /15 times lower than the thresh-
olds that would be estimated from 1 frame. The
positional uncertainty estimated in the tracking task is
the positional uncertainty associated with a single
frame. Thus, it is possible that approximately half of
the discrepancy between the forced-choice and tracking
estimates of positional uncertainty is due to temporal
integration in the forced-choice experiment.

It’s also important to consider how the tracking task
may be affected by temporal integration. In practice, if
an observer’s sensory—perceptual system is performing
temporal integration then they are responding to a
spatially smeared representation of the moving—a
motion streak—instead of the instantaneous stimulus.
Temporal integration per se is not modeled in our
implementation of the Kalman filter, but its presence in
the data would result in an overestimate of observation
noise. This effect of temporal integration might further
add to the discrepancy between the measurements of
positional uncertainty.

In this experiment, we sought to measure our
observers’ effective integration time and the degree to
which this affected the psychophysical estimates of
spatial uncertainty.

Methods

The methods for this experiment were the same as
for Experiment 2 (above), except that the duration of
the stimulus intervals was varied between 16.7 ms (one
frame) and 250 ms (15 frames) while blob width was
fixed. The interstimulus interval remained at 100 ms.
Observers KLB and JDB ran at a 17-arcmin blob
width, and LKC ran at 21 arcmin (values that yielded
nearly identical thresholds for the three observers in
Experiment 2). These were run using the same Sony
OLED monitor, but driven with a Mac Pro at a slightly
different viewing distance (see General methods).

Results

Figure 11 shows the offset thresholds as a function of
stimulus duration. As in Figure 9, the data points are
the interpolated thresholds (¢’ =1) from the cumulative
normal fits, the error bands show *1 standard error
estimated by bootstrapping, and the solid black line
show the mean thresholds across subject. Thresholds
for all observers decreased with increased stimulus
duration at the expected slope of 1/ \/@ (dashed line
for reference) until flattening out at roughly 50 to 100
ms, or three to five frames (Watson, 1979; Nachmias,
1981).
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Figure 11. Threshold as a function of stimulus duration. Each
subject’s average data are shown by the solid points. Both axes
are logarithmic. Data points and error bands are as in Figure 9.
The gray line displays the performance of an ideal observer
shifted up by a factor of 11.

Discussion

The thresholds at single frame durations approximate
what thresholds would be if observers could not benefit
from temporal integration in the psychophysical task. As
we argued earlier, moreover, the tracking task could not
have benefited from temporal integration; if anything,
using multiple frames would cause the uncertainty
estimates from the tracking task to be too high. It would
therefore be conservative to correct the psychophysical
thresholds from Experiment 2 upward by a factor
corresponding to the ratio between the single frame and
15 frame thresholds from Experiment 3. This turns out to
be about a factor of 2, and would reduce the absolute
difference between the tracking and psychophysical
estimates from a factor of 10 to about a factor of 5.

An important next step in understanding temporal
integration is to perform a comparable experiment in
the tracking task (i.e., manipulating the rate at which
the stimulus moves). Such a follow-up study would will
further clarify the relationship between the forced-
choice task and the tracking task, as well as solidify the
appropriate stimulus for a psychophysics tracking task.

In this paper, we have shown that data from a simple
tracking task can be analyzed in a principled way that
yields essentially the same answers that result from a
traditional psychophysical experiment using comparable
stimuli in a fraction of the time. In this analysis, we
modeled the human observer as a dynamic system
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controller—specifically a Kalman filter. The Kalman
filter is typically used to produce a series of estimated
target positions given an estimate of the observation
noise (e.g., known from sensor calibration). We, in
contrast, used the Kalman filter to estimate the
observation noise given a series of estimated target
positions generated by observer during our experiments.

The conceptualization of a human as an element of a
control system in a tracking task is not a novel concept. In
fact, this seems to be one of the problems that Kenneth
Craik was working on at the time of his death—two of his
manuscripts on the topic were published posthumously
by the British Journal of Psychology (Craik, 1947, 1948).
Because circuits or, later, computers, are generally much
better feedback controllers than humans, there has been
less interest in the specifications of human-as-controller
with a few exceptions: studies of pilot performance in
aviation, motor control, and eye movement research (in
some ways a subbranch of motor control, in other ways a
subbranch of vision).

It is clear that the job of a pilot, particularly when
flying with instruments, is largely to be a dynamic
controller that minimizes the error between an actual
state and a goal state. For example, the goal state might
be a particular altitude and heading assigned by air
traffic control. The corresponding actual state would be
the current heading and altitude of the airplane. The
error to be minimized is the difference between the
current and goal states as represented on the aircraft’s
instruments. It comes as no surprise, then, that a large
literature has emerged in which the pilot is treated as, in
Craik’s terms, an engineering system that is itself an
element within a larger control system. However the
pilot’s sensory systems are not generally considered a
limiting factor; pilot errors are never due to poor acuity
(to our knowledge) but rather due to attentional factors
related to multitasking or, occasionally, sensory con-
flict (visual vs. vestibular) resulting in vertigo. As such,
while tracking tasks are often studied in the aviation
literature, is not done to assess a pilots’ sensory (or
basic motor) capabilities.

The motor control literature involving tracking tasks
can be divided into three main branches: eye movement
control (e.g., Mulligan et al., 2013), manual (arm and
hand) control (e.g., Wolpert & Ghahramani, 1995;
Berniker & Kording, 2008), and, to a lesser extent,
investigations of the interaction between the two (e.g.,
Brueggemann, 2007; Burge, Ernst, & Banks, 2008;
Burge, Girshick, & Banks, 2010; van Dam & Ernst,
2013). Within the motor control literature, there are
several examples of the use of the Kalman filter to
model a subject’s tracking performance. Some of these
focus almost exclusively on modeling the tracking error
as arising from the physics of the arm and sensorimotor
integration (Wolpert & Ghahramani, 1995; Berniker &
Kording, 2008). Others provide a stronger foundation
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for our work by demonstrating how changing the visual
characteristics of a stimulus affects human performance
in a manner that can be reproduced by manipulating
parameters of the Kalman filter (Burge et al., 2008).
Taken together, this body of literature provides strong
support for the idea that the human ability to adapt to
and track a moving stimulus is consistent with the
performance of a Kalman filter. We extend this
literature by using the Kalman filter to explicitly
estimate visual sensitivity.

In the results section, we showed a strong empirical
relationship between the data from tracking and
forced-choice tasks. To further this comparison, it
would be useful to know what optimal (ideal observer)
performance would be. Obviously, if ideal performance
in the two tasks were different, then we wouldn’t expect
our data from Experiments 1 and 2 to be identical, even
if the experiments were effectively measuring the same
thing. In other words, if the two experiments yielded
the same efficiencies, then we would know they were
measuring exactly the same thing. Of course, this
unrealizable in practice because the tracking response
necessarily comprises motor noise (broadly defined) in
addition to sensory noise, whereas the motor noise is
absent in forced-choice psychophysics due to the crude
binning of the response. What we can realistically
expect is to see efficiencies from tracking and forced-
choice experiments that are highly correlated but with a
fixed absolute offset reflecting (presumably) motor
noise and possibly other factors.

The ideal observer for the forced-choice task is based
on signal detection theory (e.g., Green & Swets, 1966;
Geisler, 1989; Ackermann & Landy, 2010). To ap-
proximate the ideal observer in a computationally
efficient way, we used a family of templates identical to
the target but shifted in spatial location to each of the
possible stimulus locations. These were multiplied with
the stimulus (after averaging across the 15 frames in
each interval). The model observer chose the direction
that corresponded to the maximum template response,
defined as the product of the stimulus with the template
(in the case of the zero offset template, then the model
observer guessed with p(right) = 0.5). The stimuli and
templates were rearranged as vectors so that the entire
operation could be done as a single dot product as in
Ackermann and Landy (2010). The ideal observer was
run in exactly the same experiment as the human
observers, except that the offsets were a factor of 10
smaller, which was necessary to generate good psy-
chometric functions because of the model’s greater
sensitivity.

The left panel of Figure 12 shows the ideal observer’s
threshold as a function of blob width (black line), along
with the human observers’ data from Figure 7. The gray
line shows the ideal thresholds shifted upward by a
factor of 20. The results are as expected: the humans are
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Figure 12. Relationship between human observers and an ideal observer. Forced-choice human threshold estimates (left) and tracking
noise estimates (right) are replotted (blue, green, and red lines). The ideal observers are depicted in black and the shifted ideal in

gray.

overall much less sensitive than ideal, they approach a
minimum threshold on the left, increase with roughly the
same slope as the ideal in the middle, and then begin (or
would begin) to accelerate upward as the target becomes
invisible. A maximum efficiency of about 0.25% (a 1 : 20
ratio of human to ideal ') is approached at middling
blob widths, which is consistent with previous work
using grating patches embedded in noise (Simpson,
Falkenberg, & Manahilov, 2003).

In the tracking task, the ideal observer’s goal was to
estimate the location of the stimulus on each stimulus
frame. To implement this, a set of templates identical to
the stimulus but varying in offset in one dimension
around the true stimulus location was multiplied with
the stimulus each frame. The position estimate for each
frame was then the location of the template producing
the maximum response. The precision with which this
observer could localize the target was simply the
standard deviation of the position estimates relative to
the true target location (i.e., the standard deviation of
the error). Note that as the ideal observer had no motor
system to add noise, this estimate corresponds specif-
ically to the measurement noise in the Kalman filter
formulation. It also corresponds to the ideal observer
for a single-interval forced-choice task observer given
only one stimulus frame per judgment.

The right panel of Figure 12 shows the ideal
observer’s estimated sensory noise (dashed black line)
as a function of blob width, along with the corre-
sponding estimates of spatial uncertainty based on the
Kalman filter fit to the human data replotted from
Figure 12. The slope is the same as for the forced-
choice task. The dashed gray line is the ideal threshold
line shifted upward by a factor of 20 (the same amount
as the shift in the left panel). After a shift reflecting

efficiency in the forced-choice task, there is roughly a
factor of 2 difference remaining. As previously men-
tioned, this is not surprising because the observer’s
motor system must contribute noise to the tracking
task but not in the forced-choice task.

We have constructed a principled observer model for
the tracking task that yields comparable results to
traditional forced-choice psychophysics, establishing
the validity of the tracking task for taking psycho-
physical measurements. Here, we introduce simpler
methods of analysis for the tracking task that provide
an equivalent measure of performance. We show that
the results from an analysis of the CCGs (introduced
earlier) are just as systematically related to the forced-
choice results as are those from the Kalman filter
observer model.

The left panel of Figure 13 shows CCGs (data points)
for observer LKC (replotted from Figure 4, right), along
with the best fitting sum-of-Gaussians. Although Gaus-
sians are not theoretically good models for impulse
response functions, we used them as an example for their
familiarity and simplicity. Based on visual inspection
they seem to provide a rather good empirical fit to the
data. We used a sum of two Gaussians (the second one
lagged and inverted), rather than a single Gaussian, in
order to model the negative (transient) overshoot seen in
the data from the three smallest blob widths for LKC
and the smallest blob width for JDB. For all other cases,
the best fit resulted in a zero (or very near zero)
amplitude for the second Gaussian.

The right panel of Figure 14 shows the standard
deviations of the best fit positive Gaussians from the
left panel plotted as a function of the corresponding
forced-choice threshold estimates. As with the Kalman
filter estimates, the agreement is very good indicating
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that the tracking data yield basically the same answer
as the forced-choice data regardless of analysis.

Two further points can be made about the simple
Gaussian fits to the CCGs. First, the best-fit values for
the three parameters (amplitude, lag or mean, and
standard deviation) are very highly correlated with one
another despite being independent in principle. The best-
fit parameter values plotted against one another pairwise
are shown in Figure 14. The relationships are plotted
(from left to right) for amplitude versus lag, lag versus
width, and width versus amplitude; the corresponding
correlation coefficients are shown as insets. Clearly, it
would not matter which parameter was chosen as the
index of performance. As an aside, including the second
Gaussian (negative) in fitting the CCG is unnecessary.
The results are essentially identical when only a single
positive Gaussian is used fit to the CCGs.

In conclusion, we have presented a simple dynamic
tracking task and a corresponding analysis that produce
estimates of observer performance or, more specifically,
estimates of the uncertainty limiting observers’ perfor-
mance. These estimates correspond quite closely with the

estimates obtained from a traditional forced-choice
psychophysical task done using the same targets.
Compared with forced-choice stimuli, this task is easy to
explain, intuitive to do for naive observers, and fun.
Informally, we have run children as young as 5 years old
on a more game-like version of the task, and all were
very engaged and requested multiple “turns” at the
computer. We find it likely that this would apply more
generally, not only to children, but also to many other
populations that have trouble producing large amounts
of psychophysical data. Finally, the “tracking” need not
be purely spatial; one could imagine tasks in which, for
example, the contrast of one target was varied in a
Gaussian random walk, and the observers’ task was to
use a mouse or a knob to continuously match the
contrast of a second target to it. In conclusion, the basic
tracking paradigm presented here produces rich, infor-
mative data sets that can be used as fast fun windows
onto observers’ sensitivity.

Keywords: psychophysics, vision, Kalman filter, man-
ual tracking
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Appendix A. Convergence of

Kalman filter uncertainty estimate

Figure Al demonstrates the time course of the
convergence of the Kalman filter uncertainty estimate
on one subject’s tracking data. Each of the solid lines
represents the average estimated uncertainty (v/R) for a
particular stimulus width produced by performing
bootstrapping on the fitting procedure as we increase
the total experimental time used to estimate R. The
clouds around these estimates represent the standard
error. It requires relatively little experimental time to
produce reliable estimates of uncertainty using our
Kalman filter fitting procedure. Note that the estimates
for the four most difficult targets are easily discrimi-
nable in under two minutes of data collection per target
condition.

Appendix B. Kalman filter for

maximum-likelihood fitting
procedure

In this work we use a Kalman filter framework to
estimate subjects’ observation noise variance (R, see
Figure 5) and therefore also position uncertainty, which
is defined as v/R. The two time series produced by the

experimental tracking paradigm—target position (x;)
and subject response (X;)—are used in conjunction with
the Kalman filter in order to fit observation noise
variance by maximizing p(£]x), the probability of the
position estimates given the target position under the
Kalman filter model.

Consider the tracking paradigm a simple linear
dynamical system with no dynamics or measurement
matrices:

w,~N(0,0) (B1)

Xep1 = X+ Wy,

Vi~ N(O, R) (B2)

where the x, represents the target position, and y,
represents the subjects’ noisy sensory observations, which
we cannot access directly (see Figure 5).

Given a set of observations y;., and the parameters {Q,
R}, the Kalman filter gives a recursive expression for the
mean and variance of x,|y1.,, that is, the posterior over x at
time step ¢ given all the observations yy, ... ,y,. The
posterior is of course Gaussian, described by mean X, and
variance P,. The following set of equations perform the
dynamic updates of the Kalman filter and result in target
position estimates ().

St:Pt—1+Q

Vi =X+ Vi,

(prior variance) (B3)
K, = S,(S;+R)""  (Kalman gain) (B4)

£ =%-1+K/(y,—%_1) (posteriormean) (B5)
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P, = K,R (posterior variance) (B6) 1
We use this definition (Equations Bl and B2) and the D= K-1 _1 _ (B12)

Kalman filter equations (Equations B3—-B6) to write
p(£]x). First, we find the asymptotic value of P, and
then use that to simplify and rewrite the Kalman filter
equations in matrix form.

Since Q and R are not changing over time, the
asymptotic value of the posterior variance P, as t — ©
can be calculated by solving P=(P+ Q)R/(P+Q+ R)
for P, which yields:

p. 0 EEioR -

(V14+4RQO' —1) (B3)

In order to further simplify, we will assume Py = P..;
that is, the initial posterior variance will approach some
asymptotic posterior variance. A Kalman filter as-
ymptotes in relatively few time steps. In practice, our
observers seem to as well, but to be safe we omitted the
first second of tracking for each trial to insure that the
observers’ tracking had reached a steady state. Then
the prior variance S, Kalman gain K, and posterior
variance P are constant. Thus, the dynamics above can
be simplified to:

X = (1 = K)X—1 + Ky, (B9)
where K depends only on R:
K=(Q+P)(Q+P+R)"

This makes X a simple auto-regressively filtered
version of y. The dynamics can be expressed in matrix
form:

D& = Ky (B11)

where D is a bidiagonal matrix with 1 on the main
diagonal and K — 1 on the below-diagonal:

IO

(B10)

K-1 1

By substituting for y and multiplying by D', this
can be rewritten as:
=KD '(x+v) (B13)

Equation B13 in conjunction with Equation B10
gives the expression relating the two time series X and x,
to the unknown R. We can use this to write p(X|x):

p(Xx) ~ N(KD'x, K*RD"'D™ ") (B14)

The log likelihood, log(p(X|x)) (below), is used in
order to perform the maximume-likelihood estimation
of R.

log<p(f;yx)) = log(N' (] KD'x, K2RD"'D~ )
(B15)

1
= —glog(27t) - 5[0g|K2RD_1D_T‘

(& — KD 'x) " (K*RD™'D ") (8 — KD 'x)

N[ —

(B16)

where 7 is the total number of time points (i.e., the
length of x and X; Note: coefficients D and K are
defined in terms of Q and R). The log likelihood for a
particular blob width (¢ = s) for a given subject is
evaluated by taking the sum over all trials with ¢ = s of
p(X|x). In our analysis, maximum-likelihood estimation
of R is performed for each blob width in order to
investigate how the observer’s positional uncertainty
(v/R) changes with increasing blob width (decreasing
visibility).'
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